Formalizing a classification theorem of low-dimensional solvable Lie algebras in Lean

Paul Schwahn (Universidade Estadual de Campinas) joint with Viviana del Barco, Gustavo Infanti, Exequiel Rivas

CICM 2025

7 Oct 2025

Overview of the talk

- Who are we?
- Technical background: Formalization, Lean and Mathlib
- Mathematical subject: Lie algebras
- The classification and how to formalize it
- Outlook

The team

Started with limited knowledge about formalization of maths.

Mathematicians:

- Viviana del Barco: professor at Unicamp, differential geometer
- Gustavo Infanti: undergraduate student at Unicamp
- Paul Schwahn: postdoc at Unicamp, differential geometer

Computer scientist:

 Exequiel Rivas: researcher at Tallinn University of Technology, some past experience in Agda/Coq/F*.

Formalization, Lean and Mathlib

- Formalization ≈ verifying mathematical proofs by turning them into code (inside a proof assistant).
- A statement follows from the axioms if its proof typechecks.
- We have chosen *Lean 4* as our proof assistant.
- Mathlib: A large community-driven library of definitions/theorems formalized in Lean, focusing on classical mathematics. Tactics for automation.

Classifications in mathematics

- A common problem is the *classification* of a given type of mathematical objects.
- Given a suitable equivalence relation (e.g. isomorphism) on a category of objects, classification usually means providing a non-redundant, exhaustive list of representants, ensuring each object under consideration is equivalent to exactly one item on the list.
- Historically, classifications by hand have often suffered from:
 - Redundancy: The same structure appearing multiple times under different guises.
 - Incompleteness: Missing cases.
- This motivates formalizing classification theorems in proof assistants, ensuring correctness and completeness through machine-checked proofs.

Classifications in formalized mathematics

- Focusing on Lean, some formalized classification theorems are:
 - the structure theorem for finitely generated abelian groups (any such group is isomorphic to some $\mathbb{Z}^r \times \prod_i C_{p_i^{n_i}}$),
 - a classification theorem for finite Z-groups (a finite group is a Z-group iff it is isomorphic to a semidirect product of two cyclic subgroups of coprime order),
 - Harper–Wu 2025: the classification of groups of order pq for p,q prime $(C_{p^2}, C_p \times C_p, C_{pq}, C_q \rtimes C_p, \text{ where } p < q)$.
- That's about it.
- We turned to a classification of *Lie algebras*.

- In mathematics, a group is an abstraction of the set of symmetries of some object.
- Symmetries appear everywhere: in geometry, analysis, physics, nature, . . .
- Symmetries are usually *discrete* or *continuous*.

Figure: The 16 symmetries of a regular octagon.

Figure: The rotational symmetry of a surface of revolution.

- Continuous symmetries are organized in Lie groups: groups which are also (differentiable) manifolds such that the group operations are differentiable.
- Most of the structure of a Lie group is already determined by its *Lie algebra*, which consists of infinitesimal symmetries/symmetry generators.

Figure: Sophus Lie, 1842–1899.

Definition

A *Lie algebra* over a field \mathbb{K} is a \mathbb{K} -vector space L together with a map $[\cdot,\cdot]:L\times L\to L$ (called the *Lie bracket*), which

- is bilinear: [ax+y,z]=a[x,z]+[y,z] and [x,ay+z]=a[x,y]+[x,z] for all $a\in\mathbb{K}$, $x,y,z\in L$,
- is skew-symmetric: [x, x] = 0 for all $x \in L$,
- satisfies the *Jacobi identity*: [x,[y,z]]=[[x,y],z]+[y,[x,z]] for all $x,y,z\in L$.

A standard example of a Lie algebra is $\mathfrak{gl}(n,\mathbb{K})$, the space of all $n \times n$ -matrices over \mathbb{K} with bracket

$$[A, B] := AB - BA, \qquad A, B \in \mathfrak{gl}(n, \mathbb{K}).$$

- Like all algebraic structures, Lie algebras have substructures:
 - A *subalgebra* of L is a vector subspace $L' \leq L$ which is closed under the bracket: $\forall x, y \in L', [x, y] \in L'$.
 - An *ideal* of L is a vector subspace $L' \leq L$ which is absorbing under the bracket: $\forall x \in L, \forall y \in L', \ [x,y] \in L'.$
- An important tool to study a Lie algebra L is its derived series of ideals:

$$\begin{split} \mathcal{D}^0(L) &:= L,\\ \mathcal{D}^{k+1}(L) &:= [\mathcal{D}^k(L), \mathcal{D}^k(L)] \text{ for } k \in \mathbb{N}_0. \end{split}$$

 $\mathcal{D}^1(L) = [L, L]$ is also called the *commutator ideal* of L.

Definition

A Lie algebra L is called

- *simple* if the only ideals of L are $\{0\}$ and L itself and if $[\cdot\,,\cdot\,]\neq 0$.
- solvable if the derived series terminates eventually, i.e. if there is k such that $\mathcal{D}^k(L)=\{0\}$.
- These two properties are mutually exclusive.
- Levi 1905: Any Lie algebra can be "decomposed" into solvable and simple parts (in characteristic 0).
- If $\dim_{\mathbb{K}} L = 3$ (for any field \mathbb{K}), then L is either solvable or simple.

Lie algebras in Lean

- Nash 2022: Addition of Lie algebras into Mathlib, good deal of theory, ongoing project to classify simple Lie algebras (over algebraically closed fields of characteristic 0).
 - Oliver Nash: Formalising Lie algebras, CPP 2022, pp. 239–250, New York, 2022. Association for Computing Machinery
- In mathlib, algebraic structures are (usually) encoded using typeclasses (unbundled), and substructures using records (bundled).

Lie algebras in Lean

• A Lie algebra structure on L : Type* is a typeclass:

```
class Bracket (L M : Type*) where
  bracket : L → M → M

class LieRing (L : Type*) extends
   AddCommGroup L, Bracket L L where [...]

class LieAlgebra (K L : Type*) [CommRing K]
   [LieRing L] extends Module K L where [...]
```

• A Lie subalgebra is a record:

```
structure LieSubalgebra (K : Type u)
  (L : Type v) [CommRing K] [LieRing L]
  [LieAlgebra K L] extends Submodule K L :
  Type v where [...]
```

The statement to be formalized

Theorem

Let L be a solvable Lie algebra over a field \mathbb{K} , with $\dim_{\mathbb{K}} L \leq 3$.

- If $\dim_{\mathbb{K}} L = 1$, then $L \cong \mathbb{K}$ (abelian).
- ② If $\dim_{\mathbb{K}} L = 2$, then $L \cong \mathbb{K}^2$ (abelian) or $L \cong \mathfrak{aff}(\mathbb{K})$.
- - \bullet \mathbb{K}^3 (abelian)
 - $\mathfrak{heis}_3(\mathbb{K})$ (Heisenberg)
 - ullet aff $(\mathbb{K}) \oplus \mathbb{K}$
 - $\mathfrak{hyp}_3(\mathbb{K})$ (hyperbolic)
 - L_{α} for some $\alpha \in \mathbb{K}^{\times}$
 - M_{δ} for some $\delta \in \mathbb{K}^{\times}/(\mathbb{K}^{\times})^2$

The Lie algebras listed above are pairwise non-isomorphic.

The statement to be formalized

$\dim_{\mathbb{K}}$	Notation	Non-zero brackets
1	K	-
2	\mathbb{K}^2	_
	$\mathfrak{aff}(\mathbb{K})$	$[b_0,b_1]=b_1$
3	\mathbb{K}^3	_
	$\mathfrak{heis}_3(\mathbb{K})$	$[b_1, b_2] = b_0$
	$\mathfrak{aff}(\mathbb{K}) \oplus \mathbb{K}$	$[b_1,b_2]=b_1$
	$\mathfrak{hnp}_3(\mathbb{K})$	$[b_0,b_1]=b_1,[b_0,b_2]=b_2$
	$L_{\alpha}, \ \alpha \in \mathbb{K}^{\times}$	$[b_0, b_1] = b_2, [b_0, b_2] = \alpha b_1$
	$M_{[\alpha]}, \ \alpha \in \mathbb{K}^{\times}$	$[b_0, b_1] = b_2, [b_0, b_2] = \alpha b_1 + b_2$

Table: Notation for low-dimensional Lie algebras. Here (b_i) is a special basis, and $[b_i,b_j]=-[b_j,b_i]$ is implicit. The entire bracket is then determined by bilinearity.

The formalization

- We characterize the cases in the classification using Lie-algebraic invariants such as $\dim_{\mathbb{K}}[L,L].$
- The first step is to construct a suitable (vector space) basis for the Lie algebra in question...

```
variable {K L : Type*} [Field K] [LieRing L]
    [LieAlgebra K L]
lemma case1a (dim3 : Module.finrank K L = 3)
    (h_1 : Module.finrank K (commutator K L) = 1)
    (h : IsTwoStepNilpotent K L) :
  \exists B : Basis (Fin 3) K L, [B 1, B 2] = B 0 \land
    [B \ 0, B \ 1] = 0 \land [B \ 0, B \ 2] = 0
lemma case1b (dim3 : Module.finrank K L = 3)
    (h_1 : Module.finrank K (commutator K L) = 1)
    (h : ¬ IsTwoStepNilpotent K L) :
  \exists B : Basis (Fin 3) K L, [B 0, B 1] = 0 \land
    [B \ 0, B \ 2] = 0 \land [B \ 1, B \ 2] = B \ 1
```

The formalization

- ... then construct an isomorphism to a predefined Lie algebra from this basis.
- This construction depends on arbitrary *choices*, which is why we don't keep the isomorphism as data.

```
theorem Dim3.classification (h : Module.finrank K L = 3) (hs : LieAlgebra.IsSolvable L) : Nonempty (L \simeq_l[K] (Dim3.Abelian K)) \vee Nonempty (L \simeq_l[K] (Heisenberg K)) \vee Nonempty (L \simeq_l[K] (AffinePlusAbelian K)) \vee Nonempty (L \simeq_l[K] (Hyperbolic K)) \vee (\exists \ \alpha, \ \alpha \neq 0 \ \wedge Nonempty (L \simeq_l[K] (Family K \alpha 0))) \vee (\exists \ \alpha, \ \alpha \neq 0 \ \wedge Nonempty (L \simeq_l[K] (Family K \alpha 1)))
```

• Separately, we formalize theorems to guarantee that the different entries are pairwise non-isomorphic.

The semidirect product

- In order to conduct our formalization project, we provided many auxiliar theorems and constructions that were not in Mathlib. One such construction is the *semidirect product* of Lie algebras.
- This is the one that appears in the Levi decomposition: using it, all Lie algebras are built out of simple and solvable ones.

$$(L, \lceil \cdot, \cdot \rceil_L), \quad (J, \lceil \cdot, \cdot \rceil_J), \quad \varphi : L \to \text{Der } J \quad \leadsto \quad L \ltimes_{\varphi} J$$

The semidirect product

Definition

• Let $(J, [\cdot, \cdot]_J)$ be a Lie algebra. A *derivation* of J is a linear endomorphism $D \in \mathfrak{gl}(J)$ such that

$$\forall x, y \in J, \qquad D[x, y]_J = [Dx, y]_J + [x, Dy]_J.$$

The derivations of J form a Lie subalgebra $\operatorname{Der} J \leq \mathfrak{gl}(J)$.

• Let $(L, [\,\cdot\,,\cdot\,]_L)$ and $(J, [\,\cdot\,,\cdot\,]_J)$ be two Lie algebras over a field \mathbb{K} , and $\varphi: L \to \operatorname{Der} J$ a homomorphism of Lie algebras. The semidirect product $L \ltimes_{\varphi} J$ is the vector space product $L \times J$ together with the Lie bracket

$$[(l_1,j_1),(l_2,j_2)]:=([l_1,l_2]_L,[j_1,j_2]_J+\varphi(l_1)j_2-\varphi(l_2)j_1),$$

for any $l_1, l_2 \in L, j_1, j_2 \in J$.

The semidirect product

```
variable {K : Type*} (L J: Type*) [CommRing K]
  [LieRing L] [LieRing J] [LieAlgebra K L]
  [LieAlgebra K J] (\varphi : L \rightarrow_l[K] LieDerivation K J J)
def LieSemidirectProduct := L \times J
notation:35 L " \ltimes [" \varphi:35 "] " J:35 =>
  LieSemidirectProduct L J \varphi
instance : Bracket (L \ltimes [\varphi] J) (L \ltimes [\varphi] J) where
  bracket := fun a b \mapsto \langle[a.1, b.1],
     \varphi a.1 b.2 - \varphi b.1 a.2 + [a.2, b.2]
```

Conclusion and outlook

So far:

- We formalized necessary results on Lie ideals, semidirect product, etc.
- We obtained an admit-free proof of the classification theorem for solvable Lie algebras of dimension ≤ 3 (over arbitrary fields).
- This may be used as a blueprint for further formalization projects on classifications in mathematics.

Currently:

- Refine and refactor.
- Upstream our results to Mathlib.

Conclusion and outlook

Further work:

- Extend classification to solvable Lie algebras of higher dimension.
 (E.g. in dimension 4 the classification is known over arbitrary fields; de Graaf 2004.)
- Formalize classification(s) of simple Lie algebras in dimension 3. (This depends crucially on the algebraic properties of the field.)

Thank you!

