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Overview of the talk

Who are we?

Technical background: Formalization, Lean and Mathlib

Mathematical subject: Lie algebras

The classification and how to formalize it

Outlook
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The team

Started with limited knowledge about formalization of maths.

Mathematicians:

Viviana del Barco: professor at Unicamp, differential geometer

Gustavo Infanti: undergraduate student at Unicamp

Paul Schwahn: postdoc at Unicamp, differential geometer

Computer scientist:

Exequiel Rivas: researcher at Tallinn University of Technology,
some past experience in Agda/Coq/F*.
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Formalization, Lean and Mathlib

Formalization ≈ verifying mathematical proofs by turning
them into code (inside a proof assistant).

A statement follows from the axioms if its proof typechecks.

We have chosen Lean 4 as our proof assistant.

Mathlib: A large community-driven library of
definitions/theorems formalized in Lean, focusing on classical
mathematics. Tactics for automation.
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Classifications in mathematics

A common problem is the classification of a given type of
mathematical objects.

Given a suitable equivalence relation (e.g. isomorphism) on a
category of objects, classification usually means providing a
non-redundant, exhaustive list of representants, ensuring each
object under consideration is equivalent to exactly one item
on the list.

Historically, classifications by hand have often suffered from:

Redundancy: The same structure appearing multiple times
under different guises.
Incompleteness: Missing cases.

This motivates formalizing classification theorems in proof
assistants, ensuring correctness and completeness through
machine-checked proofs.
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Classifications in formalized mathematics

Focusing on Lean, some formalized classification theorems
are:

the structure theorem for finitely generated abelian groups
(any such group is isomorphic to some Zr ×

∏
i Cp

ni
i
),

a classification theorem for finite Z-groups (a finite group is a
Z-group iff it is isomorphic to a semidirect product of two
cyclic subgroups of coprime order),
Harper–Wu 2025: the classification of groups of order pq for
p, q prime (Cp2 , Cp × Cp, Cpq, Cq ⋊ Cp, where p < q).

That’s about it.

We turned to a classification of Lie algebras.
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Lie algebras: Background

In mathematics, a group is an abstraction of the set of
symmetries of some object.

Symmetries appear everywhere: in geometry, analysis, physics,
nature, . . .

Symmetries are usually discrete or continuous.

Figure: The 16 symmetries of a regular
octagon.

Figure: The rotational symmetry of a
surface of revolution.
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Lie algebras: Background

Continuous symmetries are organized in
Lie groups: groups which are also
(differentiable) manifolds such that the
group operations are differentiable.

Most of the structure of a Lie group is
already determined by its Lie algebra,
which consists of infinitesimal
symmetries/symmetry generators.

Figure: Sophus Lie,
1842–1899.
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Lie algebras: Background

Definition

A Lie algebra over a field K is a K-vector space L together with a
map [ · , · ] : L× L → L (called the Lie bracket), which

is bilinear: [ax+ y, z] = a[x, z] + [y, z] and
[x, ay + z] = a[x, y] + [x, z] for all a ∈ K, x, y, z ∈ L,

is skew-symmetric: [x, x] = 0 for all x ∈ L,

satisfies the Jacobi identity: [x, [y, z]] = [[x, y], z] + [y, [x, z]]
for all x, y, z ∈ L.

A standard example of a Lie algebra is gl(n,K), the space of all
n× n-matrices over K with bracket

[A,B] := AB −BA, A,B ∈ gl(n,K).
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Lie algebras: Background

Like all algebraic structures, Lie algebras have substructures:

A subalgebra of L is a vector subspace L′ ≤ L which is closed
under the bracket: ∀x, y ∈ L′, [x, y] ∈ L′.
An ideal of L is a vector subspace L′ ≤ L which is absorbing
under the bracket: ∀x ∈ L,∀y ∈ L′, [x, y] ∈ L′.

An important tool to study a Lie algebra L is its derived series
of ideals:

D0(L) := L,

Dk+1(L) := [Dk(L),Dk(L)] for k ∈ N0.

D1(L) = [L,L] is also called the commutator ideal of L.
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Lie algebras: Background

Definition

A Lie algebra L is called

simple if the only ideals of L are {0} and L itself and if

[ · , · ] ̸= 0.

solvable if the derived series terminates eventually, i.e. if there
is k such that Dk(L) = {0}.

These two properties are mutually exclusive.

Levi 1905: Any Lie algebra can be “decomposed” into
solvable and simple parts (in characteristic 0).

If dimK L = 3 (for any field K), then L is either solvable or
simple.
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Lie algebras in Lean

Nash 2022: Addition of Lie algebras into Mathlib, good deal
of theory, ongoing project to classify simple Lie algebras (over
algebraically closed fields of characteristic 0).

Oliver Nash: Formalising Lie algebras, CPP 2022, pp. 239–250,
New York, 2022. Association for Computing Machinery

In mathlib, algebraic structures are (usually) encoded using
typeclasses (unbundled), and substructures using records
(bundled).
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Lie algebras in Lean

A Lie algebra structure on L : Type* is a typeclass:

class Bracket (L M : Type*) where

bracket : L → M → M

class LieRing (L : Type*) extends

AddCommGroup L, Bracket L L where [. . .]

class LieAlgebra (K L : Type*) [CommRing K]

[LieRing L] extends Module K L where [. . .]

A Lie subalgebra is a record:

structure LieSubalgebra (K : Type u)

(L : Type v) [CommRing K] [LieRing L]

[LieAlgebra K L] extends Submodule K L :

Type v where [. . .]
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The statement to be formalized

Theorem

Let L be a solvable Lie algebra over a field K, with dimK L ≤ 3.

1 If dimK L = 1, then L ∼= K (abelian).

2 If dimK L = 2, then L ∼= K2 (abelian) or L ∼= aff(K).
3 If dimK L = 3, then L is isomorphic to one of:

K3 (abelian)
heis3(K) (Heisenberg)
aff(K)⊕K
hyp3(K) (hyperbolic)
Lα for some α ∈ K×

Mδ for some δ ∈ K×/(K×)2

The Lie algebras listed above are pairwise non-isomorphic.
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The statement to be formalized

dimK Notation Non-zero brackets

1 K –

2
K2 –

aff(K) [b0, b1] = b1

3

K3 –

heis3(K) [b1, b2] = b0

aff(K)⊕K [b1, b2] = b1

hyp3(K) [b0, b1] = b1, [b0, b2] = b2

Lα, α ∈ K× [b0, b1] = b2, [b0, b2] = αb1

M[α], α ∈ K× [b0, b1] = b2, [b0, b2] = αb1 + b2

Table: Notation for low-dimensional Lie algebras. Here (bi) is a special basis,
and [bi, bj ] = −[bj , bi] is implicit. The entire bracket is then determined by
bilinearity.
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The formalization

We characterize the cases in the classification using
Lie-algebraic invariants such as dimK[L,L].

The first step is to construct a suitable (vector space) basis
for the Lie algebra in question. . .

variable {K L : Type*} [Field K] [LieRing L]

[LieAlgebra K L]

lemma case1a (dim3 : Module.finrank K L = 3)

(h1 : Module.finrank K (commutator K L) = 1)

(h : IsTwoStepNilpotent K L) :

∃ B : Basis (Fin 3) K L, B 1, B 2 = B 0 ∧
B 0, B 1 = 0 ∧ B 0, B 2 = 0

lemma case1b (dim3 : Module.finrank K L = 3)

(h1 : Module.finrank K (commutator K L) = 1)

(h : ¬ IsTwoStepNilpotent K L) :

∃ B : Basis (Fin 3) K L, B 0, B 1 = 0 ∧
B 0, B 2 = 0 ∧ B 1, B 2 = B 1
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The formalization

. . . then construct an isomorphism to a predefined Lie algebra
from this basis.

This construction depends on arbitrary choices, which is why
we don’t keep the isomorphism as data.

theorem Dim3.classification (h : Module.finrank K L = 3)

(hs : LieAlgebra.IsSolvable L) :

Nonempty (L ≃l K (Dim3.Abelian K)) ∨
Nonempty (L ≃l K (Heisenberg K)) ∨
Nonempty (L ≃l K (AffinePlusAbelian K)) ∨
Nonempty (L ≃l K (Hyperbolic K)) ∨
(∃ α, α ̸= 0 ∧ Nonempty (L ≃l K (Family K α 0))) ∨
(∃ α, α ̸= 0 ∧ Nonempty (L ≃l K (Family K α 1)))

Separately, we formalize theorems to guarantee that the
different entries are pairwise non-isomorphic.
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The semidirect product

In order to conduct our formalization project, we provided
many auxiliar theorems and constructions that were not in
Mathlib. One such construction is the semidirect product of
Lie algebras.

This is the one that appears in the Levi decomposition: using
it, all Lie algebras are built out of simple and solvable ones.

(L, [ · , · ]L), (J, [ · , · ]J), φ : L → Der J ⇝ L⋉φ J
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The semidirect product

Definition

Let (J, [ · , · ]J) be a Lie algebra. A derivation of J is a linear
endomorphism D ∈ gl(J) such that

∀x, y ∈ J, D[x, y]J = [Dx, y]J + [x,Dy]J .

The derivations of J form a Lie subalgebra Der J ≤ gl(J).

Let (L, [ · , · ]L) and (J, [ · , · ]J) be two Lie algebras over a field
K, and φ : L → Der J a homomorphism of Lie algebras. The
semidirect product L⋉φ J is the vector space product L× J
together with the Lie bracket

[(l1, j1), (l2, j2)] := ([l1, l2]L, [j1, j2]J + φ(l1)j2 − φ(l2)j1),

for any l1, l2 ∈ L, j1, j2 ∈ J .
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The semidirect product

variable {K : Type*} (L J: Type*) [CommRing K]

[LieRing L] [LieRing J] [LieAlgebra K L]

[LieAlgebra K J] (φ : L →l K LieDerivation K J J)

def LieSemidirectProduct := L × J

notation:35 L " ⋉[" φ:35 "] " J:35 =>

LieSemidirectProduct L J φ

instance : Bracket (L ⋉[φ] J) (L ⋉[φ] J) where

bracket := fun a b 7→ ⟨ a.1, b.1 ,

φ a.1 b.2 - φ b.1 a.2 + a.2, b.2 ⟩
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Conclusion and outlook

So far:

We formalized necessary results on Lie ideals, semidirect
product, etc.

We obtained an admit-free proof of the classification theorem
for solvable Lie algebras of dimension ≤ 3 (over arbitrary fields).

This may be used as a blueprint for further formalization
projects on classifications in mathematics.

Currently:

Refine and refactor.

Upstream our results to Mathlib.
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Conclusion and outlook

Further work:

Extend classification to solvable Lie
algebras of higher dimension.
(E.g. in dimension 4 the classification

is known over arbitrary fields; de Graaf

2004.)

Formalize classification(s) of simple
Lie algebras in dimension 3. (This

depends crucially on the algebraic

properties of the field.)
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Thank you!
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