Curvature conventions May 23, 2024

Grimoire of curvature sign conventions, conditions,
operators, and examples

Because conventions are confusing, I state mine, how they relate to other conventions
and what happens on spaces of constant sectional curvature.

Throughout this note we fix a Riemannian manifold (M, g) of dimension n and denote
by (e;) an orthonormal basis of T := T,M for some p € M.

Some definitions

The Riemannian curvature tensor. Given any affine connection V on a vector

bundle EM — M, its curvature is the section RY € Q*(M,End EM) given by
RY(X,Y)=[Vx,Vy] = Vixy

In particular, if V is the Levi-Civita connection on 7' of a Riemannian metric g, then
R = RY is the Riemannian curvature tensor. We may lower its indices via the metric as

R(X,Y,Z,W) = g(R(X,Y)Z,W).

We call this convention for R the forward convention and shall use it unless otherwise
stated. The other common convention, which we call the backward conventionﬂ is
RY(X,Y) = V|xy) — [Vx, Vy], which we see for example in [I], 2, 13, 16, 13].

Sectional curvature. The sectional curvature of a Riemannian metric is determined
by R by

R(X,Y)Y, X)
g(X, X)g(Y,Y) — g(X,Y)?

and depends only on the two-plane spanned by X and Y. There is only one convention
for sec, namely the one where the round sphere S™(r) of radius r has positive constant
sectional curvature sec = 7~2. (Correspondingly, hyperbolic space has negative constant
sectional curvature). The Riemannian curvature tensor of a metric of constant sectional
curvature sec = k has the form

sec(X ANY) =

For the backward convention, the correct formulae read

R(X,Y, X)Y)
g(X, X)Q(Ya Y) - 9(X> Y)2

sec(X ANY) =

as well as
R(X,Y)Z = K(g(X, Z)Y — g(Y, 2)X).

Note that the formula in [I, Prop. 1.88] has a sign error.

IFor lack of a better name. This is not meant to be derogatory.
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The Kulkarni-Nomizu product. For symmetric 2-tensors hi,hy € Sym?, their
Kulkarni-Nomizu product is the 4-tensor hy () hy € Sym? A? given by

(h1 @ h2)(X, Y, Z, W) = ha(X, Z)ha(Y, W) + i (Y, W)ha(X, Z)
- hl(Xa W)hZ(Ya Z) - hl(Y7 Z)hZ(Xa W)
The same convention is used in [I, B]. hy @ hy is always an algebraic curvature tensor

(that is, it satisfies the first Bianchi identity) — moreover, on a space of sec = k, the
curvature tensor has the form

k
R=—§g®g,

or in the backward convention .
R=590y.
Ricci and scalar curvature. One may contract the Riemannian curvature tensor R

to obtain the Ricci tensor

Ric(X,Y) =Y R(e;, X,Y,¢;) = tr(Z = R(Z, X)Y).

Contracting with the metric yields the scalar curvature

scal = tr, Ric = Z Ric(e;, €;) = Z R(e;, ej,ej,€;).
i irj

As for sectional curvature, there is really only one convention for Ric and scal. A
space with sec = k has constant Ricci curvature Ric = (n — 1)kg and scalar curvature
scal = n(n — 1)k.

In the backward convention for R, one has of course

Ric(X,Y) =Y R(X,e;,Y,e;) = tr(Z — R(X, 2)Y)

The Ricci tensor is often turned into an endomorphism Ric € End(7") using the metric.

Curvature operator of the first kind. The Riemannian curvature tensor R gives
rise to a symmetric endomorphism R : A>T — AT via

(RIXAY),ZAW) =R(X,Y,Z,W),
where the inner product on 2-forms is given by

[XAY[ = g(X, X)g(Y.Y) = g(X,Y)".

R is called the curvature operator of the first kind. This way of defining R is what we
call the negative convention, used for example by Friedrich, Semmelmann, etc. and we
shall also use it unless otherwise stated.
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In contrast, there is also the positive convention which differs by a sign. In this
convention, R is related to sectional curvature simply by

~

(Ro, o)

{0,0)

sec(o) =

for decomposable bivectors o, so R is positive whenever sec is positive. The positive
convention is used for example in [11 2, [6].
We return to the negative convention. R may also directly defined by

R(XAY) = Zel/\RXY)

Another formula is

(Ro)(X,Y) =Y Rleie;, X, Y)o(es e;) = ZR e, e, X, Y)o(e;, e5).

1<j i,J

Here we see that this is —% of the convention for R used in [3, 3], 14] (which we may

call the doubly positive convention).
In the negative convention, the curvature operator operator on a space of sec = k is

R=—kldy.

Using the inner product on A? defined above, one has

g/®\g - 2 IdA2,
so we recover the formula R = —% g @ g from above.

Curvature operator of the second kind. The curvature operator of the second kind
is another symmetric endomorphism R : Sym? T — Sym? 7" derived from R via

(Rh Zh (e;, X)Y, €;) ZR X, e;,e5,Y)h(e;, e;).

(using the forward convention for R). This immediately implies
}C:?g = Ric.
In the case of sec = k, we have

R=(n—1)kldgy —kIdsymz .

We call this convention for R the Ricci-like convention or the almost negative convention.
It is used by [I, B]. The opposite sign convention (where (R, -) is positive on Sym?2T)
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is called the anti-Ricci-like convention or almost positive convention, used for example
in [, 3, 14).

R preserves the space Symj T of trace-free tensors if and only if g is Einstein. Just
like for sec or R the curvature tensor R may be reconstructed from R. Other possible
ways to contract R with 2-tensors are discussed in [3].

Because the operator R acts differently on ¢ than on trace-free tensors (with different
sign even for constant sectional curvature!), one sometimes considers instead the operator

o
prs}’mg R| Symg

and calls this the curvature operator of the second kind [I1].

Other contractions with the curvature tensor. One may also contract a two-
tensor &« € T ® T with other slots of the curvature tensor. If R* denotes the operator
defined by contracting the a,b-slots of R with a (where 1 < a,b < 4), then by the
symmetries of the curvature tensors only R'? and R* = —R'? are actually of interest.
If h € Sym? T, then clearly

R2h=0, R®h=Rh
For o € A%T on the other hand, we have

R0 = 2]%0, R*0 = —Ro.

using the first Bianchi identity for the second part.

The standard curvature endomorphism. Let (w;) be any orthonormal basis of
A*T, for example (e; A €;)i<j. We identify AT = so(T') using the metric, i.e. via

(XAY)(Z) =9(X,2)Y —g(Y,2)X.
The standard curvature element is the element

R) = wiR(w) € Uso(T)

in the universal enveloping algebra of so(T'). If EM — M is any vector bundle asso-
ciated to the orthonormal frame bundle P, i.e. EM = P x, E for some representation
p : O(n) — E, then the standard curvature endomorphism on EM is the fibrewise
(symmetric) endomorphism g(R)gy associated to g(R) through the infinitesimal repre-
sentation of so(7") on EM, i.e.

R)pn =Y p(wi)pe(R(wr).
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This endomorphisnf? is also sometimes denoted K(R, EM) [2], or —K [6], or Ric [15].
On a space with sec = k, we have

q(R)EM =k Caszf(n)

where Casif(n) is the (nonnegative) Casimir constant of the O(n)-representation E. On
the bundle of covariant p-tensors, EM = Q" T*M, we may succinctly write

(q(R)a)(X1,.... X,) =Y (Rlej, X)a)(X1,..., Xi1, e, X, .., Xp).
1,J
There is an uglier formula
(q(R)a)i, i, = > _Ricijoy, 7 o+ Rigimey, 7"
k kL

using Einstein summation convention. We have the following identities (it’s possible to
show them directly, but they also follow from the formula above):

q(R)r = Ric,
¢(R)rer = Ric, + 2R",
¢(R) 21 = Ric, + 2R,

¢(R)sym2 7 = Ric, — 2R,

where the Ricci endomorphism acts on tensors through the natural End(7")-representation.
In particular for o € End(T"), we have

Ric,a = Rico a 4 a o Ric.

More relations are available in |2, Thm. B]. Specializing to p-forms or symmetric tensors,
we have

q(R)a = Z el A (e; 3 R(e, ej)a), a e NPT M,
]

q(R)a = Z e/ ® (e; 1 R(es,e5)a), a € Sym? T M.
]

The endomorphism ¢(R) is precisely the curvature term appearing in the Lichnerowicz

Laplacian
AL =V'V+ Q(R)

Some authors also consider Lichnerowicz-type Laplacians where this curvature term is
scaled by a positive constant [I5]. The reason for this is the occurence of terms of the
type V*V + cq(R) in various Weitzenbock formulae.

2[1) §1.139,81.143] introduces similar operators cﬁ(R) and I' (note the sign change in the second term
of T" according to differing sign conventions for R) and claims that I' = —20%(R). The mysterious
factor of 2 probably comes from the inner product in AZ.
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The quantization map. Another convention for the standard curvature endomor-
phism coming from defining ¢ as the quantization map

q: Sym=*s0(T) — U=*s0(T) : Xk Xk

which is an isomorphism of filtered vector spaces. Using the metric duality, we under-
stand the curvature tensor R as an element of Sym?so(T) and write

1

R:§;<ka®wlwk®wl Zkaka

for an orthonormal basis (wy) of s0(T). So this ¢(R) would be 3 times the above!

Irreducible decomposition of the curvature tensor. The space of algebraic cur-
vature tensors, i.e. the kernel of the Bianchi operator b : Sym? A2°T* — A*T* with

b(R)(X,Y,Z,W)=R(X,Y,Z,W)+ R(Y,Z,X,W)+ R(Z,X,Y,W),

decomposes for n > 5 into three irreducible parts: the scalar part Rg (M g, the traceless
Ricci part Sym2 T* @® g, and the Weyl part. (For n = 4, the Weyl part splits further
into self-dual and anti-self-dual part. For n = 3, the Weyl part vanishes. For n = 2,
both traceless Ricci and Weyl part vanish. For n = 1, there is no curvature at all.) The
projections of a curvature tensor R to these parts are respectively given by

scal

1
R=U+Z+W, U=—9g®Dy, Z =
2n(n —1) n—

Ric’ ® g.
2
The Weyl tensor W is annihilated by all contractions with g.

A digression on inner products and tensors

Recall that
(X NY,a)p2r = (Y, Xua) = a(X,Y).
<6i N €j, €k N el>A2T = <6j, eiJ(ek A 61)) = ik(Sjl - 51’15]'19‘
The two summands cannot be 1 simultaneously since e; A e; = 0. If the first summand
is 1, this means (e; A ej,e; Ae;) = 1. If the second summand is 1, this means that
<6i VAN €j,€5 VAN 6i> = —1. Thus (62‘ VAN €j>i<j is an ONB of AzT
For the symmetric square, we stipulate in the same vein

(X @Y, Bygymer = (Y, Xh) = h(X,Y).

!
<6i O] €, €k ® el)SmeT = <€j, ei_n(ek © €1>> = (5ik(5jl + (Siléjk-
The two summands are both 1 if i = 7 = k = [ and we get (e; ® e;,e; ©® e;) = 2. If
only one of them is 1, this means (e; ® e;,e; ® e;) = (e; ©® ej,e; ©® e;) =1, 7 # j. Thus
(\/Li@ O] e,-),- U (Gi ® Cj)i<j is an ONB of Sym2 T.
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Similarly we define the inner product on Sym25o(T). Interpreting R as an element of
Sym? so(T)*, we obtain

Z<R wr © wl Wy = Z R wk,wl wp = Z(R(wk),wl>wl = E(wk)
l
Thus
Z(R Wi O wwy O wy = ZkaR W)
k,l

! wr © wk)k U (wk ® wl)k<l is an ONB of SmeSO(T), we

On the other hand, since (75

actually have

1 1
R = 3 Z(R, Wi, O Whwk O Wy + Z(R W © wywy O wy = 5 Z(R, Wi © wwi © wy
k k<l k.l
1 ~
=3 Zwk © R(wg)-
k

This reminds us of a similar calculation rule for A%, namely
1
=3 Zei A afe;).

Weitzenbock formulae

Having introduced the curvature endomorphism ¢(R), it is time to show where it appears.
Let V denote the Levi-Civita connection of a Riemannian manifold (M,g). We also
denote with V its extension to tensor bundles, as well as the connection on some generic

vector bundle EFM.

e On OP(M),
&*d + dd* = V*V + q(R).

e On .7?(M),
86" — "6 = V'V —q(R),

where §*h =", e’ ©® V,h (so that L,:g = 6*« for a € Q' (M)).
e On QP(M,EM),

(dV) d¥ +d¥ (d¥) = V'V + q(R)arr + Y _(wi)arr- @ R(wi)p
k

= V'V + ¢(R)spvror — ¢(R)E — Z ﬁ(wk)APT* ® (wi)E,
k

where d¥(a ®@v) =Y, (" A V,a®@ v+ e Aa® V).



Curvature conventions May 23, 2024

e In particular, for « € QY(M,TM),
((@V)*d¥ +dv(d¥))a = V*Va + a o Ric + R*a.
e If (M, g) is Einstein, we recover on Q!(M, T*M)

1
(dV)*dY +d¥ (dV)* = V*Va + 5q(R).

Weitzenbock formulae for double forms QP(M, AYT* M) are available in [10].

Some examples

We have already seen spaces of constant sectional curvature (spherical or hyperbolic).
Let us have a look at other symmetric spaces.

Complex projective space. The following is taken from [3] §5] and adapted to our
conventions. Let M = CP" with its standard complex structure J and the Fubini-Study
metric (normalized so that 1 < sec < 4).

The curvature operator of the first kind (positive convention) may be written as

Ro=0—JocgolJ—{Jo)l

or, utilizing the decomposition A2T* = RJ @ Ag™™ @ A>~,

~

R = 2(n + 1) IdRJ —|—2 IdAg,-&- .

For the curvature operator of the second kind (almost negative convention), we have in
turn

o 1 1
Rh:—§h+§tr(h)g—gjohoJ

and Sym?T* = Rg & Symg’Jr @ Sym>~, thus

o

R= (n+1)Tdg, +Tdgy, e —21dg o

Here the superscript £ indicates the subspace of tensors commuting (resp. anticommut-
ing) with J. We note that AJ" 2 Sym; ™ = su(n).

CP" is Einstein, i.e. Z = 0. For the scalar curvature, we have U = 2’;:1119 ® g, so
~  2(n+1) - 2(n?*—1) 2(n+1)
U=—1Id U= Idg, ————=1Id .

om—1 m—1 0 op—1 = ovmd
Hence the Weyl parts are given by
—~  4(n?*-1) 2(n — 2) 2(n+1)
W=——"1Id Id 2 Idpe,-
m—1 e —1 N g1 M
o n+1 3 6n
W = dg, — Id Id
2n— 1" 9 2p—1 ST gp 1 o
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Cubing and tracing just for fun, we obtain

(2n — 1) tr(W?)
(2n — 1)% tr(W?)

8(n —1)(n+ 1)n(2n — 1)(4n® + 2n — 11),
—(n +1)(216n* — n* + 25n — 28).

: W 5952 7 70136
For n = 3 we obtain tr(W3) = 252= and tr(W3) =128,

The same analysis holds true on the dual (complex hyperbolic space CH"), but with
signs of the curvature reversed.

Some important results and references

e If R >0 on Sym?7T and 6R = 0 (harmonic curvature), then sec > 0 [7]. (alm.
pos. conv.)

e If R>0on Sym27T and (M, g) is Einstein, then sec = k [5]. (alm. pos. conv.)
e ¢(R) > 0 on all so(n)-representations if and only if B > 0 [6, §4].

o If R >0 on Sym27, then sec > 0 []. (alm. pos. conv.)

e I preserves Sym? T if and only if (M, g) is Einstein.

e If (M, g) is compact, connected, orientable, with R >0 on Symg T, then M is a
real homology sphere [14]. Even better, it is diffeomorphic to a spherical space
form [4].

e If (M, g) is compact, connected, orientable, with R> 0, then M is a real homology
sphere [12].

o If R > 6, then sec > 6/2 [13, 14]. (doubly pos. conv.)
o If R> 6 on Sym2T, then sec > 6 [I4]. (alm. pos. conv.)
e If R >0 on Sym?T, then g is flat [14]. (alm. pos. conv.)

e If R > 0, then the GauB-Bonnet integrand is positive [§].

Recheck these and clear up!!! especially for conventions.
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