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fields for two different Riemannian metrics makes the study of the variation
of Dirac operators feasible. For this, it is crucial to take into account the
fact that the bundles in which the sections acted upon by the Dirac operators
take their values are changing. We also give the formulas for the change in
the eigenvalues of the Dirac operators. We conclude by giving a few cases in
which an eigenvalue is stationary.
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Introduction

The problem we treat in this article is how spinors and the Dirac operator depend on the
metric. Despite its importance in both physics (when gravity, i.e. the space-time metric,
is coupled with other interactions) and mathematics (when the Dirac operator serves as
a tool in Riemannian Geometry, starting with the fundamental formula of Lichnerowicz,
cf. [16]), this question has largely been ignored in the literature.

This state of affairs may be attributed to a restrictive interpretation of the theorem
with which Élie Cartan concludes the chapter Spinor fields in Riemannian geometry in [6]
(and the book itself), and which he repeats in a note at the end of the published version
of his Notice sur les travaux scientifiques [7]: “The difficulties (that one faces in extending
Dirac’s equation from Special Relativity to General Relativity) are insurmountable if one
maintains the classical technique of Riemannian Geometry: given a system of coordinates
on space-time, it is impossible to represent [...] a spinor field by a finite number of
components [...]” (cf. [18] for a study of some of the physical consequences). The successful
use of the Dirac operator as a model elliptic operator in novel approaches to the Index
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Theorem, where reference to the metric is secondary, may be another explanation. The
problem of this metric dependence has been studied in an article of E. Binz and R. Pferschy
(cf. [5], see also [20]). We complete their results and give a geometric solution to the
problem.

Algebraically, the notion of a spinor is defined only after a a metric has been chosen,
and the difficulty in comparing spinors attached to two different metrics is connected
to the following (elementary but seldomly explicitly stated) algebraic fact: the finite-
dimensional representations of the spin group Spin(n) (a two-fold covering of the special
orthogonal group SO(n)) which are spinorial cannot be extended to representations of the

two-fold cover G̃L(n) of the general linear group GL(n), because all finite-dimensional

representations of G̃L(n) are themselves already representations of GL(n) (cf. [21]).
While defining geometric objects only up to isomorphism is unproblematic in the alge-

braic setting, the same cannot be said after attaching “parameters” to the theory, that
is, when one takes sections of bundles of these objects and wants to differentiate them.

This is precisely the case for spinor fields on which the Dirac operator is naturally
defined. The formalism we develop for the analysis of the metric dependence has the
advantage of being geometric, allowing us to evaluate variations of the Dirac operator
and subsequently the dependence of its eigenvalues on the metric.

The article is organised as follows: in Sec. 1 we establish the natural equivalence between
any two Euclidean structures on a vector space, on which the entire article rests. This
construction enables us to define a notion of metric Lie derivative, which Sec. 2 is devoted
to. Above all, it makes it possible to compare spinors for different metrics, further allowing
us to extend the notion of metric Lie derivative to these fields. Such an extension had
already been introduced by Yvette Kosmann in [14]. We then give in Sec. 3 the explicit
formulas describing the variation of the Dirac operator and its eigenvalues.

The reader unfamiliar with the notions of spinors and Dirac operator may find it useful
to refer to [12] and to the recent book [15].

The authors would like to thank Michael F. Atiyah, Oussama Hijazi, André Lichnerow-
icz and Raymond Stora for discussions around the subject of this article. The first author
has benefited from the hospitality of the Department of Mathematics at Ohio State Uni-
versity during the time the first version of this manuscript was written.

1 Natural equivalence between Euclidean structures

on a vector space

Let V be an n-dimensional real vector space, and denote by MV its cone of Euclidean
metrics. It is well-known that any two such metrics g and h can always be transformed
into one another by a linear mapping l (i.e. one for which one has h = l∗g).

We shall concern ourselves with the problem of making the definition of l canonical,
an indispensable ingredient for a “parameter-dependent” theory such as that of Rieman-
nian metrics on a manifold. For this later geometric use, it is helpful to formulate this
correspondence as follows.

We denote with BV the space of bases of V , viewed in the spirit of the theory of
principal fibre bundles as an open subset of the space L(Rn, V ) of linear maps from Rn to
V , by identifying an element f of this open subset with the basis (f(ei)) (where (ei) is the
standard basis of Rn). The group GL(n,R) of linear automorphisms of Rn acts transitively
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and freely from the right on BV , so that BV can be identified with a copy of GL(n,R)
in which there is “no distinguished (identity) element”. (The group GL(V ) of linear
automorphisms of V also acts transitively on BV , although from the left.) Furthermore,
if g is a Euclidean metric on V , we denote by BgV the space of g-orthonormal bases of V .
The orthogonal group O(n) acts on BgV transitively and freely from the right, making
BgV a submanifold of BV (and the orthogonal group of V with respect to g, denoted
OgV , acts again from the left). It is worth noting that, if f ∈ BgV and if e denotes the
standard Euclidean metric on Rn, then

g = (f−1)∗e.

For any pair of metrics g, h ∈ MV , we generically denote by Hg = g−1 · h the g-
symmetric automorphism of V associated to h via the duality defined by g, that is, for
u, v ∈ V by

h(u, v) = g(Hg(u), v),

We thus have

1.1 Proposition (cf. [5]). Let g and h be two Euclidean metrics on a vector space V .
The linear map bgh, defined on a g-orthonormal basis f as

bgh(f) = H−1/2
g ◦ f

(where, for a positive-definite symmetric endomorphism A, A1/2 denotes the positive-
definite square root), is a diffeomorphism from BgV to BhV which is natural in the
following sense:

(i) bgh = (bhg)
−1,

(ii) bhg commutes with the right action of O(n) on BV ,

(iii) for any differentiable curve of metrics t 7→ gt on V , bggt is an isotopy from BgV to
BgtV .

Proof. We first verify the algebraic properties. If f is g-orthonormal, i.e. g = (f−1)∗e,
then

((bgh(f))−1)∗e = (H1/2
g )∗(f−1)∗e = (H1/2

g )∗g = h,

since for v ∈ V
((H1/2

g )∗g)(v, v) = g(H1/2
g (v), H1/2

g (v)) = h(v, v).

This shows that bgh(f) is in fact h-orthonormal.
Taking the map Gh = h−1 · g and v, w ∈ V , we have

h(Gh(v), w) = g(v, w) = g(Hg ◦ (Hg)
−1(v), w) = h(H−1

g (v), w),

showing that G−1
h = Hg and thus bgh = (bhg)

−1.
For (ii), if U ∈ O(n), we have

bgh(f ◦ U) = H−1/2
g ◦ f ◦ U = (H−1/2

g ◦ f) ◦ U = bgh(f) ◦ U.

The end of the proof is now simply a consequence of the fact that the map S 7→ S−1/2

is a diffeomorphism from the cone of symmetric positive-definite endomorphisms to itself.
Lastly, it suffices to see that, g being fixed, the map h 7→ Hg is differentiable, which is

evident.
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1.2 Remark. (i) In general, if l1 and l2 are two linear automorphisms of V , one has

bg(l2◦l1)∗g 6= b
l∗2g

(l2◦l1)∗g ◦ b
g
l∗2g

,

since, if we set h = l∗2g and k = (l2◦ l1)∗g, then K
−1/2
g 6= K

−1/2
h ◦H−1/2

g unless certain
commutation properties are verified to which we shall return later.

(ii) If h = a2g for some a ∈ R+, the expression reduces to bgh = a−1Id.

The geometric content of the map bgh is not entirely clear from Proposition 1.1, but shall
be illuminated by Proposition 1.3 which gives an alternative definition. The following
discussion is a variation on the Polar Decomposition Theorem which states that GL(n,R)
is diffeomorphic to the product of O(n) which the cone Cn of symmetric positive-definite
metrics, realised by the decomposition of any matrix A into an orthogonal matrix U and
a symmetric positive-definite matrix S = (A>A)1/2.

Consider the projection p : BV →MV defined by

p(f) = (f−1)∗e.

The Polar Decomposition implies in particular that the fibration p is trivial. Its fibre over
g is precisely BgV . Identifying the tangent space TfBV with L(Rn, V ), let AfV and
SfV be the subspaces of L(Rn, V ) consisting of maps whose matrices with respect to f
are antisymmetric and, respectively, symmetric. The subspace AfV is then precisely the
vertical space of the fibration p at f , and SfV is a natural choice for a complement. The
distribution f 7→ SfV is clearly O(n)-equivariant (since the conjugate of a symmetric
matrix by an orthogonal matrix is again symmetric), so it may be considered as the
horizontal distribution of an O(n)-connection which we christen the natural connection
on the fibre bundle p.

Let us recall a few well-known facts. The space MV , which one may identify with the
symmetric space GL(n,R)/O(n), carries a natural Riemannian metric 〈·, ·〉 which is given
at a point g by

〈k, k′〉g = tr(Kg ◦K ′g).

This metric is complete and has non-positive curvature: two elements h and h′ in MV are
contained inside a common maximal flat subspace through g if and only if the associated
endomorphisms Hg and H ′g commute.

Among the curves joining g with h that are contained in a flat subspace, we find first
the geodesic from g to h with respect to the metric 〈·, ·〉 which may be written as

t 7→ gt = g ·H t
g

(where H t
g denotes the symmetric positive-definite t-th power of Hg), and second the line

segment
t 7→ (1− t)g + th.

We thus have

1.3 Proposition. Let g, h ∈ MV . The transformation bgh coincides with the parallel
transport in BV with respect to the natural connection along any curve joining g with h
that is contained in a flat subspace of MV .
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Proof. The parallel transport BgV → BhV along any curve t 7→ gt joining g with h may
be obtained by integrating in BV the differential equation

dft
dt

= −1

2

(
dGt

dt

)
gt

◦ ft.

The image of f0 ∈ BgV is then the solution at time 1 of the above equation with f0 as
initial condition.

We determine this horizontal lift in the case of the line segment between g and h, where
ġt = h− g is constant. The differential equation can thus be rewritten as

dft
dt
◦ f−1

t = −1

2
(Hg − I) ◦ (I + t(Hg − I))−1

which admits the solution ft = (I + t(Hg − I))−1/2 ◦ f0 for f0 ∈ BgV . We thus arrive at

f1 = H−1/2
g ◦ f0 = bgh(f0).

In order to show that for any curve σ joining g with h lying entirely inside a flat subspace
of MV containing g and h, the parallel transport along σ depends only on g and h, we
need the following lemma which determines the curvature of the natural connection on
the fibre bundle p : BV →MV .

1.4 Lemma. Let k, k′ ∈ TgMV . The curvature of the natural connection on the fibre
bundle p : BV →MV is given by

Ωk,k′(f) = −1

4
[Kg, K

′
g] ◦ f .

Proof. The left hand side is given by the vertical part (using the projection defined by
the connection) of the Lie bracket of the horizontal lifts of two vector fields extending k
and k′ defined in a neighbourhood of g. Since MV is an open subset of the vector space
Sym2 V ∗, we take as extensions of k and k′ the corresponding constant vector fields which
we again denote by k and k′. The horizontal lift of k ∈ TgMV at a g-orthonormal frame
f is given by −1

2
Kg ◦ f ∈ TfBV . As we have already noted, the integral curve of the

horizontal lift of the constant vector field k starting in a frame f0 ∈ BgV is

ft = (I + tKg)
−1/2 ◦ f0 .

The Lie bracket we seek may be calculated as the second order term in the expression for
the endpoint of the curve obtained by successively traversing the integral curves of the
horizontal lifts of k and k′ for the times t, s, −t and −s. This expression is

(I − sK ′g+sk′)−1/2 ◦ (I − tKg+tk+sk′)
−1/2 ◦ (I + sK ′g+tk)

−1/2 ◦ (I + tKg)
−1/2 ◦ f0 ,

whose st term is easily calculated with the help of the identities

K ′g+tk = (I + tKg)
−1 ◦K ′g ,

Kg+tk+sk′ = (I + tKg+sk′)
−1 ◦ (I + sK ′g)

−1 ◦Kg ,

K ′g+sk′ = (I + sK ′g)
−1 ◦K ′g .
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Keeping only the first order terms and those with st in the Taylor expansion, one obtains

(I − sK ′g+sk′)−1/2 ∼ I +
1

2
sK ′g ,

(I − tKg+tk+sk′)
−1/2 ∼ I +

1

2
tKg −

1

2
stK ′g ◦Kg ,

(I + sK ′g+tk)
−1/2 ∼ I − 1

2
sK ′g +

1

2
stKg ◦K ′g ,

(I + tKg)
−1/2 ∼ I − 1

2
tKg .

Putting everything together, we arrive at the final result Ωk,k′(f) = −1
4
[Kg, K

′
g] ◦ f0 (note

that this is already vertical since [Kg, K
′
g] is antisymmetric).

Proof of Proposition 1.3 – Continued. We now find ourselves in a familiar situation. Any
two curves connecting g with h which both lie in a flat subspace of MV containing g and
h can be viewed as the trajectories (i.e. integral curves) between times 0 and 1 of vector
fields on MV . The bracket of the horizontal lifts in BV of these vector fields coincides
with the lift of the bracket downstairs, and their flow satisfies the same relations as that
of their projections to MV . Their trajectories will therefore also meet at time 1.

1.5 Corollary. Let g, h, k ∈MV be three metrics inside a common flat subspace of MV .
Then bgk = bhk ◦ b

g
h.

Proof. It suffices to take a curve joining g with k by ways of h and to apply Proposition 1.3.
One also directly verifies that, if [Hg, Kg] = 0, we have1

H
−1/2
k ◦K−1/2

g = (Hk ◦Kg)
−1/2.

Proposition 1.3, being a geometric version of Proposition 1.1, can directly be extended
to the spinorial setting. In order to do so, let us choose a realisation B̃V of the universal
(two-fold) cover of BV . Each fibre BgV is then non trivially covered by a manifold B̃gV
diffeomorphic to the group Pin(n) which we shall call the space of spinorial bases of V

(relative to g and the covering B̃V ).

1.6 Proposition. The natural map b which to any pair of metrics g and h associates
the diffeomorphism bgh : BgV → BhV lifts to a natural map β on the space of spinorial

bases B̃V , associating to any pair of metrics g and h a Pin(n)-equivariant diffeomorphism

βgh : B̃gV → B̃hV .

Proof. The horizontal distribution f 7→ SfV naturally lifts to a horizontal distribution

in B̃V , determining a Pin(n)-equivariant connection on the bundle B̃V , which we view
as a Pin(n)-principal bundle over MV .

The map βgh is now defined as the parallel transport in the principal bundle B̃V along
any curve joining g with h that is contained in a flat subspace.

1In the original article, the formula reads H
−1/2
k ◦K−1/2

g = (Hg ◦Kg)
−1/2.
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1.7 Remark. The previous considerations cannot be extended as they stand to the case
of Lorentzian metrics l on an (n + 1)-dimensional vector space V , for reasons we shall
now state.

Take the Minkowski metric

m = (ε1)2 + . . . (εn)n − (εn+1)2

as a model metric on Rn+1 (where we denote by (εi) the dual of the standard basis). The
map

q(f) = (f−1)∗m

defines again a fibration q : BV → L V , where L V denotes the space of Lorentzian
metrics on V , an open (non-convex!) cone in Sym2 V ∗. The vertical subspace at f ∈ BV
is then naturally identified with the set of maps f ◦B : Rn+1 → V where B is any matrix
in the Lie algebra of the Lorentz group O(n, 1).

Again, there is an O(n, 1)-invariant horizontal distribution, given by elements which
are symmetric in the Lorentzian sense, determining a parallel transport along any curve
in L V . It is, however, generally not possible to distinguish a privileged family of curves
joining two given elements of L V . In particular, linear interpolation does not allow us
to join two elements that are not already joined by a geodesic of the natural metric 〈·, ·〉
which is again given by 〈k, k′〉l = Trace (Kl◦K ′l) (note that this metric is not Riemannian,
but of signature (1

2
(n2 + n+ 2), n)).

Moreover, it is not clear how to give a formula for the natural map between two
Lorentzian metrics l and k since, if the automorphism Kl = l−1 · k is well-defined, it
does not necessarily have only positive eigenvalues. It is thus not possible to take a
square root without choosing how to cut the complex plane, creating difficulties in the
parametric case which is after all our aim.

However, these difficulties disappear when one stays merely in a neighbourhood of a
given Lorentzian metric, which is totally sufficient for extending the construction of a
metric Lie derivative, given in Sec. 2, to the Lorentzian case.

2 Metric Lie derivative of tensor and spinor fields

The usual Lie derivative, which we denote by LX , is based on the possibility of trans-
porting tensors along the flow (ξt) of any vector field X. Since this is not possible for
spinor fields, we shall replace it, via the transformations bgξ∗t g and βgξ∗t g introduced in the

preceding paragraphs, by a metric Lie derivative L g
X acting on tensor as well as spinor

fields.
Like the usual Lie derivative, L g

X is a derivation with respect to the tensor product.
However, unlike the usual derivative, it preserves the metric g, i.e. for any vector field
X we have L g

Xg = 0 (see Proposition 2.9), but also has curvature in the sense that
L g

[X,Y ] is in general different from the commutator [L g
X ,L

g
Y ] (see Proposition 2.12). The

two derivations LX and L g
X on tensor fields coincide if and only if the vector field X is a

Killing field, i.e. if its flow consists of isometries. The metric Lie derivative on spinor fields
coincides with another construction of the Lie derivative due to Y. Kosmann (cf. [14]).

We begin by extending the previously introduced algebraic notions to the setting of
differentiable manifolds.
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On a differentiable manifold M of dimension n, let BM denote the GL(n,R)-principal
bundle of frames. For any Riemannian metric g on M , the g-orthonormal frames form an
O(n)-principal bundle which we denote by OgM . Its fibre over a point m ∈M is nothing
but BgmTmM in the notation of Sec. 1. Let h be another Riemannian metric on M ,
and OhM its O(n)-principal bundle of orthonormal frames. We denote by bgh the O(n)-
equivariant bundle morphism OgM → OhM which, on the fibre over a point m ∈ M , is
given by bgmhm .

For any representation µ of O(n) on a vector space E, we shall also denote by bgh the
fibrewise isomorphism

bgh : EgM = OgM ×µ E
∼−→ EhM = OhM ×µ E

defined as follows: to any element ξ ∈ EgM , represented by an element u ∈ E relative to
a g-orthonormal frame f , we associate the element of EhM with the same component u
relative to the h-orthonormal frame bgh(f), in other words

bgh([f, u]) = [bgh(f), u].

The equivariance of bgh : OgM → OhM implies that bgh : EgM → EhM is well-defined.

2.1 Remark. Whenever the O(n)-representation µ is the restriction of a linear repre-
sentation of GL(n,R), likewise denoted by µ, the two vector bundles EgM and EhM are
both naturally identified with the tensor bundle EM = BM ×µ E. In light of this iden-
tification, however, bgh, viewed as an endomorphism of EM , does not generally coincide
with the identity. In particular, if µ is the standard representation µ0 of O(n) on Rn,
the fibre bundles OgM ×µ0 Rn and OhM ×µ0 Rn are naturally identified with the tangent

bundle TM and in this case bgh coincides with H
−1/2
g , the inverse of the positive-definite

square root of the isometry Hg = g−1 · h : (TM, g)→ (TM, h).

Let us now consider the case where the manifold M is oriented and spin (in other
words, we suppose that the first two Stiefel–Whitney classes w1(M) ∈ H1(M,Z2) and

w2(M) ∈ H2(M,Z2) vanish, cf. [17]). We denote by G̃L
+

(n,R) the universal cover of the
positive linear group GL+(n,R).

We choose a spin structure α on M (that is, a point in a certain affine space modelled

on the Z2-vector space H1(M,Z2)) and realise it as a G̃L
+

(n,R)-principal bundle B̃+M ,
which is fibrewise a non-trivial cover of the bundle B+M of positively oriented frames.
For any metric g, the choice of B̃+M determines a spinorial metric γ in the form of
a Spin(n)-principal bundle, namely the subbundle SpinγM ⊂ B̃+M which covers the
bundle SOgM of positively oriented g-orthonormal frames.

For any (real or complex) representation σ of the group Spin(n) on a vector space Σ,
we denote by ΣγM = SpinγM ×σ Σ the associated vector bundle. We say that σ is a
spinorial representation if it is the restriction of a representation of the Clifford algebra
that is unitary in the sense that the image of any unit vector is a unitary endomorphism.
We then call the corresponding Hermitian vector bundle a spinor bundle. By definition,
any spinor bundle is thus a left-module for the Clifford algebra bundle ClgM .

The natural map β that we defined in the algebraic setting extends differentiably to
the bundle of spinorial bases, and consequently, determines a family of homomorphisms
between spinor bundles for different metrics that we shall again denote by β. To be
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precise, if γ and η are two spinorial metrics corresponding to the same bundle B̃+M ,
then to any γ-spinor ψ represented by v in a spinorial basis φ we associate as before the
η-spinor βγη (ψ) with the same representative v, in other words

βγη ([φ, v]) = [βγη (φ), v].

Again, this correspondence is well-defined because of the Spin(n)-equivariance of the
natural map βγη . If σ is a spinorial representation, then βγη is compatible with Clifford
multiplication in the sense that for any exterior form ω, viewed as an element of ClgM ,
and any γ-spinor ψ, one has

βγη (ω ·γ ψ) = bgh(ω) ·η βγη (ψ). (1)

Any diffeomorphism ξ on M lifts to an O(n)-equivariant diffeomorphism ξO of OgM by
setting

ξO = b(ξ−1)∗g
g ◦ Tξ.

Such a lift exists also in the spinoral case to SpinγM , provided that ξ preserves both the
orientation and the spin structure α. However, this lift is a priori only defined up to the
action of Z2 (cf. [14]). Nevertheless, it is unambiguously defined if the diffeomorphism ξ
is connected to the identity by a path. We then denote this lift by ξSpin.

This allows us to formulate the following definition of the metric Lie derivative of a
(local) field of orthonormal frames.

2.2 Definition. Let X be a vector field on a Riemannian manifold (M, g) whose local
flow is denoted by (ξt). The g-Lie derivative of a field of g-orthonormal frames F with
respect to X at a point x ∈M is the element L g

XF of o(n) = Lie(O(n)) defined by

L g
XF =

d

dt
(ξO
−t ◦ F ◦ ξt)

∣∣
t=0

(2)

via the canonical identification of the vertical tangent space at F (x) with o(n).
If M carries a spinorial metric γ, the γ-Lie derivative of a field of γ-spinorial frames Φ

with respect to X is the element L γ
XΦ of spin(n) = Lie(Spin(n)) given by

L γ
XΦ =

d

dt
(ξSpin
−t ◦ Φ ◦ ξt)

∣∣
t=0
. (2’)

Whenever the spinorial frame Φ is the lift F̃ of an orthonormal frame F , the metric Lie
derivative L γ

XF̃ is the image of L g
XF under the isomorphism spin(n) ∼= so(n) induced by

the natural projection Spin(n)→ SO(n). Under the classical identifications of the vector
spaces spin(n) and so(n) with the space A Rn of antisymmetric endomorphisms of Rn,
one then has

L γ
XF̃ =

1

2
L g
XF. (3)

2.3 Proposition. For a field of orthonormal frames F , the metric Lie derivative L g
XF

and the ordinary Lie derivative LXF (viewed as an element of gl(n,R)) are related by
the formula

L g
XF = Alt(LXF ) (4)

where Alt denotes the natural projection gl(n,R)→ o(n) that to any matrix associates its
antisymmetric part.
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Proof. The metric Lie derivative L g
XF may be written as

L g
XF = TF (X)−XO

F (m) , (5)

where XO denotes the metric lift to OgM of the vector field X, defined at a frame f over
the point m by

XO
f =

d

dt
(b
ξ∗−tg
g (Tmξt ◦ f))

∣∣
t=0

.

In the same way, we may write

LXF = TF (X)−XGL
F (m) , (5’)

where XGL is the natural lift of X to GL(M), defined at f by

XGL
f =

d

dt
(Tmξt ◦ f)

∣∣
t=0

.

2.4 Lemma. At any point f ∈ OgM ⊂ GL(M), we have

XGL
f −XO

f =
1

2
(LXg)f

where (LXg)f is the (symmetric) element of gl(n,R) that is determined by LXg via the
frame f .

Proof. From the definitions of the lifts XO and XGL it follows that

XO
f −XGL

f =

(
d

dt
b
ξ∗−tg
g

∣∣
t=0

)
f

using the notation of Lemma 2.4.
The result now follows directly from Remark 2.1.

Proof of Proposition 2.3 – Continued. Proposition 2.3 is a direct consequence of Equa-
tions (5) and (5’), of Lemma 2.4 and the fact that −1

2
(LXg)F is the symmetric part of

LXF , as can be seen directly using that F is an orthonormal basis at every point.2

2.5 Proposition. For any function a ∈ C∞(M,O(n)), or respectively α ∈ C∞(M, Spin(n)),
we have

L g
X(F · a) = (Ad a−1)(L g

XF ) + a−1(LXa), (6)

L γ
X(Φ · α) = (Adα−1)(L g

XF ) + α−1(LXa). (6’)

Proof. Equation (6) is an immediate consequence of Proposition 2.3 and the analogous
formula for the ordinary Lie derivative.

Equation (6’) then follows from Equation (3).

Having defined the metric Lie derivative on frame fields, we define the metric Lie
derivative of tensor and spinor fields in the following natural way.

2The original article contains a sign error here: it claims that the symmetric part of LXF is 1
2 (LXg)F .
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2.6 Definition. Let EµM be the vector bundle associated, via OgM , to a representation
µ of O(n). For any vector field X, the metric Lie derivative L g

XS of a section S of EµM
along X is defined by

L g
XS = [F,LXu+ Tµ(L g

XF )u] , (7)

where u ∈ E represents S relative to a local section F of OgM .
Let ΣγM be the vector bundle associated, via SpinγM , to a representation σ of Spin(n).

The metric Lie derivative L γ
Xψ of a section ψ of ΣγM in the direction X is defined by

L γ
Xψ = [Φ,LXv + Tσ(L γ

XΦ)v] , (7’)

where v ∈ Σ represents ψ relative to a local section Φ of SpinγM .

Note. In the preceding formulas, Tµ and Tσ denote the derivatives at the identity of
the representations µ and σ.

2.7 Remark. (i) It follows immediately from Proposition 2.5 that Definition 2.6 does
not depend on the choice of local frames.

(ii) If the manifold is spin, every tensor bundle can be constructed from the bundle of
spinorial frames (although it is not a spinor bundle!), and the two definitions of
metric Lie derivative coincide.

(iii) Like the ordinary Lie derivative, the metric Lie derivative is a derivation with respect
to the tensor product on tensors and coincides with the usual derivative on scalars.
As an immediate result, the metric Lie derivative is also a derivation for the tensor
product on spinors and/or tensors.

2.8 Proposition. The metric Lie derivative L g
X acting on a field of µ-tensors S differs

from the ordinary Lie derivative by the formula

L g
XS = LXS +

1

2
((LXg)])∗µS, (8)

where (LXg)] denotes the endomorphism associated to LXg via the metric g, and ∗µ the
infinitesimal action of an endomorphism field on a µ-tensor field by the representation µ.

In consequence, the two Lie derivative coincide whenever X is a Killing vector field.

Proof. This is a consequence of Proposition 2.3 taking into account Lemma 2.4.

The essential properties of the metric Lie derivative are collected in the following propo-
sitions.

2.9 Proposition. The metric Lie derivative L g preserves the metric g, i.e. for any vector
field X,

L g
Xg = 0.

More generally, for any (orthogonal or unitary) representation µ of O(n) and any two
µ-tensor fields S1 and S2, we have for any vector field X

LX(S1, S2)g = (L g
XS1, S2)g + (S1,L

g
XS2)g, (9)

11



where (·, ·)g denotes the Euclidean (Hermitian) inner product determined by µ.
If M carries a spinorial metric γ and ΣγM is the vector bundle associated to a unitary

representation σ of Spin(n), then for any two section ψ1 and ψ2 of ΣγM , we have

LX(ψ1, ψ2)γ = (L γ
Xψ1, ψ2)γ + (ψ1,L

γ
Xψ2)γ , (9’)

where (·, ·)γ denotes the Euclidean (Hermitian) inner product determined by σ on ΣγM .
If σ is a spinorial representation, then for any differential form ω (viewed as a section of
ClgM acting on ΣγM via the representation σ), we have

L γ
X(ω ·γ ψ) = (L g

Xω) ·γ ψ + ω ·γ (L γ
Xψ), (9”)

where ·γ denotes the action of ClgM on the spinor bundle ΣγM (the representation σ is
implied).

Proof. Equations 9 and 9’ are immediate consequences of the defining Equations 7 and
7’. The vanishing of L g

Xg follows then from considering the standard representation of
O(n) on Rn.

Equation 9” can be shown as follows: by the definition of a spinorial representation, σ
is the restriction to Spin(n) of a linear homomorphism Cl(n)→ End Σ (again denoted by

σ). Relative to a γ-spinorial frame F̃ which is the lift of a g-orthonormal frame F , the
Clifford multiplication of a γ-spinor field ψ by a differential form ω is written as

ω · ψ = [F̃ , σ(α)v]

where α represents the form ω in Cl(n) relative to F , and v represents ψ relative to F̃ .
We thus have, using the defining Equation 7’,

L γ
X(ω · ψ) = [F̃ ,LX(σ(α)v) + Tσ(L γ

XF̃ )(σ(α)v)]

= [F̃ , σ(LXα)v + σ(α)LXv + σ(ad(Tσ(L γ
XF̃ ))α)v + σ(α)Tσ(L γ

XF̃ )v]

= [F̃ , σ(LXα + ad(Tσ(L γ
XF̃ ))α)v + [F̃ , σ(α)(LXv + Tσ(L γ

XF̃ )v)]

= (L g
Xω) · ψ + ω ·L γ

Xψ .

2.10 Proposition. On a Riemannian manifold (M, g), let a be a function, X a vector
field and S a µ-tensor field. Then

L g
aXS = aL g

XS −
1

2
(da ∧X[)∗µS . (10)

If M carries a spinorial metric γ and ΣγM is the vector bundle associated to a represen-
tation σ of Spin(n), then, for any section ψ of ΣγM , we have

L γ
aXψ = aL γ

Xψ −
1

4
(da ∧X[) ·γ ψ . (10’)

Proof. This proposition is a direct consequence of the defining Equation 7 in view of
Proposition 2.3 and, in the spinorial case, of Equation (3).
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We may compare the metric Lie derivative to the Levi-Civita connection. In order to
do so, we recall that the Levi-Civita connection ∇g associated to the metric g lifts to the
bundle of spinorial frames. We naturally denote the thus induced connection by ∇γ. This
gives us a covariant derivative for γ-spinor fields. We must, however, treat with caution
the fact that the action of the exterior algebra by Clifford multiplication yields a factor 1

2

in the action of connection forms (see (3)). We thus obtain

2.11 Proposition. The metric Lie derivative and the Levi-Civita covariant derivative
are, for vector fields X and µ-tensors fields S, related by the formula

L g
XS = ∇g

XS −
1

2
(dX[)∗µS (11)

(where X[ denotes the 1-form dual to X via the metric g, and d the exterior derivative),
and for a γ-spinor field ψ by the formula

L γ
Xψ = ∇γ

Xψ −
1

4
(dX[) ·γ ψ . (11’)

Proof. Equations (11) and (11’) are easily verified using the defining Equation (7) together
with the analogous formula for the covariant derivative. They may also be deduced from
Proposition 2.10 with the following universal argument: by Proposition 2.10, the mapping

a 7→ L g
aX +

1

2
(da ∧X[)∗µ

is a differential operator of order 0 in a. The same applies to

a 7→ ∇g
aX .

The difference between the two sides of (11) is thus tensorial in X. It then suffices to
note that this 1-form is invariant under g-orthogonal transformations, hence it must be
zero.

2.12 Proposition. The curvature of the metric Lie derivative L g, i.e. its failure to be
a Lie algebra homomorphism between the Lie algebra T M of vector fields on M and the
Lie algebra of differential operators on vector fields, is given by the formula

[L g
X ,L

g
Y ]−L g

[X,Y ] = −1

4
[(LXg)], (LY g)]]. (12)

Proof. This is verified directly, starting from Proposition 2.3 and using the fact that the
antisymmetric part of the commutator of two endomorphisms is the sum of the commu-
tator of the antisymmetric parts and the commutator of the symmetric parts.

2.13 Remark. The right hand side of Equation (12) vanishes as soon as X (or Y ) is
an infinitesimal conformal transformation, since then (LXg)] (or (LY g)]) is a multiple of
the identity. Because of this, one may consider that calling L g

X a “Lie derivative” is only
really justified for these kinds of vector fields, which is in accord with the remark that
one can find on page 101 of [19].
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3 Variations of the Dirac operator and its

eigenvalues under changes of the metric

Recall that for any γ-spinor field ψ (relative to any spinorial representation σ),

Dγψ =
n∑
i=1

fi ·γ ∇γ
fi
ψ,

where (fi) is a g-orthonormal basis at the point in question.
Now that we know how to compare spinor fields for two spinorial metrics γ and η (in the

same spinorial class, but belonging to two distinct metrics g and h), it becomes possible
to compare the Dirac operators Dγ and Dη acting on γ- and η-spinor fields, respectively.
We shall do this by introducing the transported operator

γDη = (βγη )−1 ◦Dη ◦ βγη . (13)

3.1 Theorem. The transport γDη of the η-Dirac operator is, on any γ-spinor field ψ,
expressed as

γDηψ =
n∑
i=1

fi ·γ ∇γ

H
−1/2
g (fi)

ψ

+
1

2

n∑
i=1

fi ·γ H1/2
g (∇g

H
−1/2
g (fi)

H−1/2
g + gAh

H
−1/2
g (fi)

◦H−1/2
g ) ·γ ψ,

(14)

where (fi) is a g-orthonormal frame and gAh = ∇h − ∇g is the difference of the two
Levi-Civita connections for h and g, respectively.

Proof. By the definition of the transported Dirac operator, we have

γDηψ =
n∑
i=1

fi ·γ (γ∇η

H
−1/2
g (fi)

ψ),

where γ∇η = (βγη )−1 ◦ ∇η ◦ βγη acting on sections of SpinγM is the image of the Levi-
Civita connection ∇η under the natural map βγη . It is in fact induced by the connection
g∇h = H

1/2
g ◦ ∇h ◦H−1/2

g defined on SOgM , which is the transport of ∇h under the map
bgh.

Equation (14) now follows from a direct calculation using Equation (1) and the fact

that (bgh(fi)) is an h-orthonormal basis (recall that bgh(fi) = H
−1/2
g (fi)).

3.2 Remark. (i) Observing that the principal symbol of γDη is given by the first term
on the right hand side of (14), we would like to point out that this operator is itself
not a Dirac operator.

(ii) The other term on the right hand side of (14) involves the expression

H1/2(∇gH−1/2 + gAh ◦H−1/2),

which is precisely the difference g∇h −∇g.

Since the connection g∇h is metric, H1/2(∇g
XH

−1/2 + gAhX ◦H−1/2) is antisymmetric
for any X and may thus be considered as an element of the Clifford algebra.
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In order to study the variation of Dη when h varies in the space of metrics MM ,
we replace Dη with the transported operator γDη which acts on sections of the (fixed!)
bundle of γ-spinors.

The tangent vectors to a metric g ∈ MM will be identified with symmetric bilinear
forms. For example, a symmetric bilinear form k is the tangent vector at t = 0 to the
curve of metrics t 7→ gt = g + tk.

3.3 Theorem. The infinitesimal variation of the Dirac operator at a spinoral metric γ
in the direction of changing the Riemannian metric by k is given by the formula(

d

dt
γDγt

∣∣
t=0

)
ψ = −1

2

n∑
i=1

fi · γ∇γ
Kg(fi)

ψ +
1

4
(δgk + d(trg k)) ·γ ψ , (15)

where (fi) is a g-orthonormal frame and where δg denotes the divergence operator acting
on symmetric 2-tensor fields.

Proof. By Theorem 3.1, we have

d

dt
γDγt

∣∣
t=0

= −1

2

n∑
i=1

fi ·γ ∇g
Kg(fi)

+
n∑
i=1

fi ·γ
(
∇g
fi

d

dt
(Gt)

−1/2
g

∣∣
t=0

+
d

dt
gAgtfi

∣∣
t=0

)
. (16)

The 3-tensors occurring in the second term are respectively equal to

∇g d

dt
(Gt)

−1/2
g

∣∣
t=0

(X, Y, Z) = −1

2
(∇g

Xk)(Y, Z)

and
d

dt
gAgt
∣∣
t=0

(X, Y, Z) =
1

2
((∇g

Xk)(Y, Z) + (∇g
Y k)(X,Z)− (∇g

Zk)(X, Y )) .

These quantities are symmetric in the last two and the first two entries, respectively. As a
consequence, the 3-form terms in the Clifford product formula do not contribute, leaving
only the contractions, which yield the second summand in (15).

3.4 Remark. The space MM of Riemannian metrics on M has an interesting geometry;
it carries in particular an action of the diffeomorphism group Diff(M) of M . Varying the
Riemannian metric by action of diffeomorphisms does not change the geometry. Since we
only care about those infinitesimal variations of the metric that change the geometry, it
is helpful to restrict to variations that are transverse to this action. This is ensured by
imposing that k satisfies the condition δk = 0. (In this way, its inner product with respect
to the standard Riemannian metric on MM with any trivial infinitesimal variation LXg
is then zero; this is because the divergence δ is, up to a factor 1

2
, the adjoint to the operator

X 7→ LXg.) For such a variation, Equation (15) simplifies by vanishing of the δk term.

We now turn to the variation of the eigenvalues of the Dirac operator under a change
of the metric. Throughout the following, we assume that we are dealing with a spinorial
metric γ whose corresponding Riemannian metric is subject to an infinitesimal variation
k, to which we associate the variation gt = g + tk.

We recall that, according to a result of Rellich (cf. [13, Thm. 3.9], see also [13, Lem. 3.15]),

the analytic family of operators Dγt admits an analytic spectral decomposition (λ
(i)
t ,Π

(i)
t )

where, for each t, λit is an eigenvalue and Πi
t the corresponding spectral projector. Let λ
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be a fixed eigenvalue of Dγ, then there exist m branches λ
(1)
t , . . . , λ

(m)
t passing through

λ, i.e. such that λ
(1)
0 = . . . = λ

(m)
0 = λ. Hence any infinitesimal variation k of the metric

determines m “first derivatives” dλ(r)/dt
∣∣
t=0

for 1 ≤ r ≤ m (where m = 1 if the eigenvalue

is simple or if its multiplicity is constant in the direction of k). We denote by E
(r)
λ the

corresponding eigenspaces.
We thus arrive at the following result.

3.5 Theorem. For any r = 1, . . . ,m, the first derivative of λ corresponding to the branch
λ

(r)
t in the direction of k may be written as

dλ
(r)
t

dt

∣∣
t=0

= −1

2

∫
M

(k,Qψ(r)) volg, (17)

where ψ(r) is any unit element of the eigenspace E
(r)
λ , and where, for any spinor field ψ,

Qψ is the real symmetric bilinear form determined by

Qψ(X, Y ) =
1

2
Re((X ·γ ∇γ

Y ψ, ψ) + (Y ·γ ∇γ
Xψ, ψ)). (17’)

Proof. Due to the theorem of Rellich cited above, ψ(r) extends to an analytic family ψ
(r)
t

of unit spinors with respect to the L2 norm that are eigenspinors of Dγt for the eigenvalue
λ

(r)
t .
We thus have

dλ
(r)
t

dt

∣∣
t=0

=
d

dt

(∫
M

(ψ
(r)
t , γDγtψ

(r)
t ) volg

) ∣∣
t=0

which may be expanded into three terms. The two terms that contain a derivative of
the eigenvector give zero contribution since they involve the L2 inner product of ψ(r)

with dψ(r)/dt, which vanishes because of the normalisation condition on ψ
(r)
t . This leaves

only the term that includes the derivative of the Dirac operator. We may thus use
Equation (15) which yields the asserted formula (17) when we take into account that the
term δgk + d trg k also does not contribute since its Clifford product action on ψ(r) is
antisymmetric.

3.6 Remark. The quadratic form −1
2
Qψ(r) may be considered as the r-th branch of the

gradient of λ with respect to the standard inner product on MM .
One may also adopt another point of view and consider the map ψ 7→ −1

2
Qψ as a

quadratic form defined on the eigenspace Eλ with values in the space of symmetric 2-
tensors on M . Its trace (with respect to the L2 metric on Eλ) can thus be interpreted
as the gradient of the function η 7→ Trace(γDη)

∣∣
im Π

, where Π is the spectral projector
onto the sum of the eigenspaces that result from deforming Eλ in a neighbourhood of the
metric γ. This function is nothing but the sum of eigenvalues that emanate from λ in this
deformation.

The quadratic form Qψ associated to an eigenspinor ψ for a nonzero eigenvalue λ can
never be zero since its trace with respect to g is λ‖ψ‖2. In the case of a non-zero eigenvalue,
we shall limit ourselves to variations of the metric that fix the total volume, i.e. to in-
finitesimal variations k such that

∫
M

(Tracegk) volg = 0 . We say that a nonzero eigenvalue
λ (perhaps with multiplicity) is critical if its gradient in the sense of Remark 3.6, i.e. the
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trace of the form Q taken over Eλ, is a multiple of the metric g (which is automatically
zero if λ = 0).

Traditionally, the eigenspinors for the eigenvalue 0 are called harmonic spinors. In
the case where the dimension n of M is even, the space of harmonic spinors splits as an
orthogonal direct sum into harmonic spinors of positive and negative chirality. Since the
Clifford multiplication by a vector exchanges chiralities, it follows immediately from (17’)
that the restriction of Q to each of the two subspaces vanishes. In particular, the trace
of Q is zero on the space of harmonic spinors, that is, 0 is a critical eigenvalue for any
metric (provided there is at least one non-trivial harmonic spinor).

In the case where all nontrivial harmonic spinors have the same chirality (which can
only occur non trivially if n is a multiple of 4, due to the Index Theorem), the quadratic
form Q is identically zero on the space of harmonic spinors. The dimension of the kernel
is thus minimal (again by the Index Theorem); it cannot decrease in a neighbourhood of
the considered point in the space of metrics.

One question naturally arises: are metrics whose harmonic spinors have only one chi-
rality generic? To our knowledge, this question is still open.

An eigenvalue of the Dirac operator does not change when the metric is varied by action
of diffeomorphisms (which preserve the spinorial structure). As a result, the differential
of the eigenvalue in the space MM of Riemannian metrics vanishes on the tangent space
at g to the orbit under the action of diffeomorphisms. This implies that the divergence
of the quadratic form Qψ must be zero for any eigenspinor field ψ (cf. [4, Chap. 4]). One
may verify this fact directly by the following calculation (we omit the indices g and γ):

(δQψ)(X) = −
n∑
i=1

(∇fiQψ)(fi, X)

=
1

2
Re

(
n∑
i=1

((fi · ∇2
fi,X

ψ, ψ) + (X · ∇fiψ,∇fiψ) + (∇Xψ,Dψ)− (X ·Dψ, ψ)

)
=

1

2
Re (−(∇XDψ, ψ) + (∇Xψ,Dψ)− (X ·Dψ, ψ))

and the last expression clearly vanishes when ψ is an eigenspinor.
Let us examine the particular case where the change of metric is conformal. If h = e2ug,

then Equation (14) reduces to

γDηψ = e−u
(

Dγψ +
n− 1

2
du ·γ ψ

)
, (18)

or alternatively
γDη = e

n+1
2
u ◦Dγ ◦ e−

n−1
2
u. (18’)

This fact reflects the existence of a conformal Dirac operator defined on sections of the
spinor bundle with conformal weight −1

2
(n− 1), both of which may be defined purely in

terms of the conformal structure (cf. [12] where one must take care that TM is taken with
conformal weight −1, while in our case the tangent bundle has conformal weight +1.)

The derivative of an eigenvalue with respect to the variation k = 2ag is by Theorem 3.5
equal to

dλ
(r)
t

dt

∣∣
t=0

= −λ
∫
M

a|ψ(r)|2 volg.
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The Dirac eigenvalue 0 is thus always critical for conformal variations. This is a conse-
quence of Equation (18’) which furnishes an isomorphism between the spaces of harmonic
spinors for two conformally related metrics.

In the case of conformal variations, we have the following result as a corollary of Equa-
tion (18’).

3.7 Proposition. A nonzero eigenvalue λ is critical for conformal variations of the met-
ric that fix the total volume, i.e. for those infinitesimal variations k = 2ag such that∫
M
a volg = 0, if and only if the corresponding eigenspinor has constant length.

Recall that a γ-spinor field ψ is called a γ-Killing spinor if it satisfies the relation

∇γ
Xψ = −λ

n
X ·γ ψ

for any tangent vector X and some λ ∈ R. Such a spinor field is clearly an eigenspinor of
the Dirac operator for the eigenvalue λ. One can show that this eigenvalue is in absolute
value the smallest eigenvalue of D and that any eigenspinor for this eigenvalue is a Killing
spinor (cf. [10, 11]). The existence of Killing spinors imposes quite restrictive conditions
on the Riemannian metric g, in particular g is an Einstein metric with scalar curvature
4(n−1)
n

λ2. As an immediate consequence of Equations (17) and (17’), we have the following
proposition.

3.8 Proposition. If (M,γ) carries a nontrivial Killing spinor, the corresponding eigen-
value λ is critical for variations of g among metrics having a given total volume.

Note that since the eigenspace Eλ consists of Killing spinors, the quadratic form Q (and
not only its trace) is proportional to g.

We give an example of a spin manifold where all eigenvalues of the Dirac operator are
critical.

3.9 Proposition. The Dirac eigenvalues of the standard spinorial metric on the sphere
Sn are all critical (for variations that preserve the total volume).

Proof. Let γ denote the standard spinorial metric (with constant sectional curvature equal
to 1). The eigenvalues of Dγ are precisely the numbers ±(k + n

2
), where k ∈ N (cf. [2]).

The eigenspinors corresponding to the minimal eigenvalues ±n
2

are Killing spinors. The
spinor bundle ΣγS

n is trivialised by an orthonormal basis (ψα) of En/2 (or of E−n/2).
Following [2], we may introduce the operators

A+ = (D + 1
2
)2 and A− = (D − 1

2
)2

whose eigenspaces A ±
k are the tensor products Hk ⊗ E±(k+n/2), where Hk denotes the

space of spherical harmonics of order k, i.e. the space of eigenfunctions of the Riemannian
Laplacian for the eigenvalues k(n+ k − 1).

One easily establishes the isomorphisms

A +
k = Ek+n/2 ⊕ E−(k−1+n/2), 1 ≤ k <∞, (19+)

A −
k = E−(k+n/2) ⊕ Ek−1+n/2, 1 ≤ k <∞. (19−)
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It follows directly from (17’) that the trace of the quadratic form Q restricted to the
subspaces A ±

k is proportional to g. For this, it suffices to evaluate it on a basis that
respects the direct sum.

The proof is finished by a recursive argument using the orthogonal decompositions (19+)
and (19−) together with the fact that the quadratic form is a multiple of the metric g for
any Killing spinor, i.e. for any element of A ±

0 = E±n/2.

3.10 Remark. One may compare this result with the result obtained in [3] for the
Riemannian Laplacian acting on functions.
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